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Abstract. ,A molecular dynamics simulation of the a- and p-phases of cristobalite has been 
performed. The simulated p-phase was found to be much more disordered than the a-phase. 
in agreemenf with evidence from many experimental techniques. The nature of the disorder 
was found tc be dynamic, in agreement with results from many experimental techniques. but 
no distinct domains were detected. The results are in agreement with the rigid unit mode (RUM) 
model of framework structures. and recent inelastic measurements. 

1. Introduction 

1.1. Recent work on the structure of cristobalite and the phase transition 

Cristobalite is the stable phase of Si02 above 1743 K at ambient pressures. It'is easily 
quenched below this temperature and exists in a metastable state without conversion 
to either the triaymite or quartz forms. At ambient pressures there are two phases of 
cristobalite, a low-temperature tetragonal form of space group P41212, the a-phase, and a 
high-temperature cubic form of space group F d h ,  the ,%phase. The low-temperature form 
is chiral and so may also be described by P43212. The transition between these two phases 
occurs in the metastable temperature range (Tm~cz 540 K) and is strongly discontinuous. The 
precise transition temperature can be altered by the presence of defects like stacking faults 
or chemical impurities, and there is a hysteresis in the measured value of T, on heating and 
cooling. Furthermore, infrared spectroscopy and NMR studies have shown that the transition 
occurs over a range of temperatures rather than at a Gngle transition temperature. 

A number of detailed experimental studies have been carried out on the phase transition 
in cristobalite. Early x-ray and neutron diffraction data of the crystal structures of the a- 
and p-phases have recently been extended by high-resolution neutron and x-ray powder 
diffraction measurements [l]. When all the crystallographic results were taken together it 
was shown that the phase transition could be described within the~fratnework of a simple 
Landau free-energy function, and, despite the large discontinuity at Tu, the temperature 
dependence of the mean field order parameter was shown to be accurately modelled over a 
wide temperature range. The powder diffraction studies showed that the large spontaneous 
strains that accompany the phase transition-the tetragonal cell parameters a and c shrink by 
3% and 5% respectively at T,--foIlow as the square of the order parameter. Unfortunately, 
the crystallographic data have not provided an unambiguous description of the structure of 
the fl-phase. As we will describe below, there have been a number of different models 

0953-8984195/(w1?71+18$1950 @ 1995 1OP Publishing Ltd 1771 



1172 I P Swainson and M T Dove 

proposed to try to reconcile the crystallographic data with crystal-chemical constraints, but 
all these models invoke disorder of some kind. Among the recent experiments that have 
been performed to shed light on this disorder are infrared and Raman spectroscopy [Z], 
nuclear magnetic resonance [3,4], electron diffraction 1561, high-temperature x-ray powder 
diffraction 171, and inelastic neutron scattering [8]. A detailed theoretical study of the phase 
transition which led to a new model for the p-phase was carried out by Hatch and Ghose [9], 
and more recently electronic structure calculations have been performed [lo, 111. Some 
experimental work has also been carried out on the related material Alp04 [4, 12, 131, and 
most recently the transition in this material has been examined theoretically [14]. 

1.2. Models of j3-cristobalite 

The first description of the structure of the p-phase, known as the 'ideal' model, was given 
by Wyckoff [15, 161. He suggested that the silicon and oxygen atoms occupy, respectively, 
the special equivalent positions Sa and 16c in the space group F d h ,  which are separated 
by the vector [1/8,1/S,l/S]. In this structure the S i - 0 4  bond angle is constrained to be 
180°, and the Si-0 bond is only 1.54 A in length. This is counter to the behaviour in 
most other silicates at ambient pressure, where the Si-oSi bond angle is typically between 
140450" and the S i 4  bond length is around 1.61 A. To overcome this difficulty with the 
'ideal' model, several disordered models have been proposed. One of the earliest was that 
of Nieuwenkamp [17]. In this model the oxygen atoms do not lie on well-defined positions, 
but the S i 4  bond precesses about its average orientation so that the oxygen atoms lie on an 
annulus of fixed radius. An annular radius of 0.49 A corresponds to an S i 4  bond length of 
1.61 A and an Si-&Si bond angle of 14.5'. which are much more realistic from a chemical 
viewpoint. 

One of the more popular models has been the statically disordered model of Wright and 
Leadbetter [IS]. In this model, the oxygen atoms are placed in the 96h sites, with partial 
occupancy of 1/6. In order to minimise the distortion of the Si04 tetrahedra, Wright and 
Leadbetter [IS] extended their model to include short-range order, and proposed that the 
structure of the f3-phase consists of~small domains of tetragonal symmetry, space group 
1zZd. Due to the loss of the 3 axis, there are six possible orientations of this cell, so 
that the p-phase is actually an average over domains of all orientations, and thereby the 
macroscopic cubic symmetry Fd3m is recovered. In each domain the Si-0 bond lengths 
and Si-0-Si bond angles have realistic values. Some support for this model has recently 
been given by the electronic structure calculations of Liu ef af [lo]. 

More recently the model of Wright and Leadbetter [lS] has been challenged using 
symmetry arguments by Hatch and Ghose 191. These authors suggest that the fl-phase 
consists of domains of symmetry of the a-phase. Their symmetry arguments show six 
possible orientations of the tetragonal unit cell of each of the two chiral forms of the a- 
phase giving twelve distinct twins. In their model, the macroscopic symmetry of the ,%phase 
is given by averaging over all a-domain configurations. Hatch and Ghose [9] argue that the 
principal objection to the model of Wright and Leadbetter [IS] is that the tetragonal space 
group proposed as the symmetry of the domains, 1z2d, is not a supergroup of the space 
group of the @-phase, P41212. 

What is not clear in either of the proposed domain models is the expected size or life 
time of the domains. Certainly no experimental data are available on this point. For domain 
models to be realistic the domains need to be large enough and to live for long enough to be 
recognisable as such-we presume that the lower limits are a few unit cells in size and of 
the order of a few phonon periods. Our own Raman and infrared spectroscopic studies [Z] 
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and the Raman study of Bates [19] provide no evidence for the existence of recognisable 
domains of any sort, and indeed the spectroscopic data strongly suggest that domains do 
not exist, other than those farmed as transient fluctuations. 

We have therefore proposed a more general interpretation of the disorder in the p- 
phase based upon the rigid unit mode (RUM) model which was initially proposed to solve a 
number of problems associated with the phase transitions in quartz [20] and more recently 
generalized to any framework silicate by Dove et a1 [21,22] and Giddy et a1 [23]. Because 
this model is central to the work presented in this paper. we describe it in some detail in 
a separate section below. However, we note that in this model the two domain models of 
Wright and Leadbetter [I81 and Hatch and Ghose [9] assume an equivalent status. Both 
types of domains can occur within the structure at once, and low energy domain walls 
between domains can easily be formed. These are simply constructed as different linear 
combinations of the same set of RUM displacements. However, the phase space for domain 
formation is rather larger than the six or twelve pockets proposed by either model. Thus 
there are a large number of ways that the structure can accommodate realistic S i 4  bond 
lengths and Si-0-Si bond angles without any need for significant distortions of the ideal 
SiO, tetrahedra. 

~ 

~ 

1.3. Experimental evidence of disorder in @-cristobalite 

We have noted that the implausibility of the ‘ideal’ model has led to the suggestion of 
disorder in the p-phase. Whilst diffraction studies have not been able to distinguish between 
different disordered models, structure refinements of the p-phase have tended to produce 
better agreement between calculated and observed diffraction intensities when some disorder 
is introduced into the structure model than when the ‘ideal’ model is refined. However, 
even when the ‘ideal’ model is used in the refinement, the temperature factors lead to 
thermal ellipsoids that are signicantly elongated in directions normal to .the { 11 1 )  directions, 
consistent with the types of disorder proposed above. 

Any model for disorder in p-cristobalite would predict the existence of structured diffuse 
scattering in a powder diffraction measurement. Wright and Leadbetter [ 181 predicted that 
a diffuse background would be generated from their model, but failed to measure it in 
an x-ray powder diffraction experiment. However, more recently Schmahl et al [l] found 
that there is a very distinct undulating background of diffuse scattering in neutron powder 
diffraction, which virtually vanishes on cooling into the a-phase. Diffraction experiments 
provide evidence of disorder, but it is difficult to tell the character of the disorder (static or 
dynamic) and whether well-defined unit-cell domains exist. 

Strong planes of diffuse scattering have been observed in B-cristobalite in transmission 
electron microscopy (TEM) studies by Hua et a1 [6] and Withers ef a1 [5]. The dependence 
of this diffuse scattering on wavevector is quite consistent with our RUM model [SI. 

Some degree of disorder is indicated by Raman and infrared spectroscopic studies. We 
have noted above that these studies do not lend support to specific domain models. All 
except two of the peaks that would be expected to disappear in the space group of the 
p-phase do so completely on heating above the transition. Both these peaks are very broad, 
in excess of 40 cm-’, which is a typical signature of the existence of disorder, suggesting 
a fluctuation lifetime of less than 0.5 ps. 

Finally, a recent inelastic neutron scattering measurement on a powdered sample showed 
that there is a large increase in the number of low-frequency modes on heating from the 
m-phase into the p-phase [SI. The existence of a significant number of low-frequency 
excitations is again a typical signature of the existence of disorder [SI. 
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1.4. A i m  of the present s~udy 

All the experimental work described above was carried out on powdered samples. This 
is a consequence of the fact that good quality single crystals of cristobalite are hard to 
acquire and tend to be rather mechanically unstable if cycled through the transition, and 
large single crystals, such as would be needed for neutron scattering studies, are simply not 
available. The restriction to work on powders limits the scope of experimental work that can 
be performed on cristobalite. Thus it is useful to turn to computational studies to provide 
new insights or supporting evidence for any model. There have been only two previous 
computational studies of cristobalite. Welkny et al [24] have reported some Monte Carlo 
simulations of the p-phase in support of their electron diffraction studies. More recently 
Tse and Klug 1251 have performed a simulation of cristobalite at high pressure and of the 
phase transition at ambient pressure. 

The purpose of the present study is to examine the nature of the disorder present in 
the j3-phase of cristobalite using molecular dynamics simulations, with some supporting 
calculations performed in the or-phase. We have restricted ourselves here to the calculation 
of real-space quantities. At issue is the nature of the disorder in the p-phase, together with 
the intepretation of some of the experimental results obtained in this phase. Before we start 
to describe our work we first outline in some detail the RUM model as applied to cristobalite. 

1.5. Rigid unit modes 

We have recently proposed a new interpretation of the nature of the p-phase that is based 
on the concept of rigid unit modes [8,20, 21,22,23]. RUMS are normal modes of vibration 
that can propagate without any distortion of the Si04 tetrahedra at least within the small’ 
amplitude (harmonic) limit, and consequently RUMS can have relatively low frequencies. 
The possible existence of low-frequency modes in a framework silicate may be seen to 
arise by the description of the network in terms of a model potential of the form [S, 261 
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where cqj and ,9ijr: are the intratetrahedral S i 4  bond-stretching and 0-Si-O bond- 
bending force constants respectively. In this model potential there are no intertetrabedral 
terms goveming the Si-O-Si angle, although these forces will exist in reality. Strong 
intratetrahedral restoring forces and negligible intertetrahedral interactions lead to an 
approximation where the Si04 tetrahedra may be treated as rigid units, whose mutual 
orientations are nearly independent. The concept of RUMS arises naturally from this 
approximation-the RUM solutions to the corresponding phonon equations will have zero 
frequency [S, 21, 22, 231. The actual existence of any RUM solutions follows from a 
subtle point of symmetry. In principle the existence of zero-frequency modes follows 
from a system having fewer independent geometrical constraints than degrees of freedom. 
For a framework structure consisting of linked tetrahedra there is at face value an exact 
balance between the numbers of geometrical constraints and degrees of freedom, so these 
are marginal cases having an expected zero number of RUM solutions. However, symmetry 
can cause some of the geome~cal  constraints to be linearly dependent. It tums out that in all 
crystalline frameworks the effect of symmetry is to allow a small but significant number of 
RUMS to be supported. The set of RUMS that may exist in the p- and @-phases of cristobalite 
have been previously determined [8,22,23] and are given in tables 1 and 2. From table 1 it 
can be seen that in the ,%phase there are RUMS for whole planes of wavevectors in reciprocal 
space. The planes and lines observed in TEM [5, 61 all correspond to directions in which 
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Table 1. Rigid unit modes in +9-cristobalite 

Wavevector Rigid unit modea 

Table 2. Rigid unit modes in a-cristobafite. Note that there are many fewer RUMS than in ,9- 
cristobalite and that the €direction in wcristobalite is parallel to the Zdirection in B-cristobalite. 

Wavevector Rigid unit model 

The supemripts denote the degeneracy of the modes, and the subscripts refer to the symmetries 

A2 and E are acoustic modes. 
of the modes. 

RUMS are predicted (tables 1 and 2). The number of RUMS in the cubic p-phase is much 
greater than that in the tetragonal a-phase as the higher symmetry means that some of the 
constraints on the tetrahedra are no longer linearly independent [21]. The RUM model of 
p-cristobalite suggests a dynamically disordered structure, in which the disorder orginates 
from the action of a linear combination of RUMS of many different symmetries. 'The or-phase 
is relatively well-ordered as fewer RUMS are compatible with the lower symmetry. 

Another piece of evidence for the existence of RUMS comes from the realization that 
the X, RUM at k = (0, 1,O) has been identified as providing the instability for the phase 
transition 18, 21, 22, 231, consistent with the analysis of Hatch and Ghose [9]. 

We may make a loose division between those RUM motions that are chiefly rotational 
and those that are chiefly torsional in character. Torsional motions are those which change 
the intertetrahedral S i - M i  bond angle. Rotational motions are those which, at a fixed 
torsional angle, rotate the tetrahedra about the 'annulus'. In reality there is no restriction 
on a RUM in a real system to be purely rotational or torsional, but each will have some 
component of both sorts of motion. This point has been discussed in more detail elsewhere 
[20, 211. 

2. Molecular dynamics simulation 

The computer used for these simulations was the Cambridge University AMT DAP 610/32. 
The DAP (distributed array processor) is a massively parallel machine consisting of 
4096 individual processing elements (PES) laid out in a 64 x 64 square array. A major 
advantage of using the DAP for such simulations is the ability to map almost any lattice 
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onto the array. The long-vector method of indexing the 64x64 array [27] was used to 
simulate a cube of 1 6 x 1 6 ~ 1 6  with skew periodic boundary conditions, where each PE 
contains one unit cell. Another is the large sample size which may be simulated. The larger 
the sample size, the more representative of the bulk will the simulation become. This is 
particularly important when examining the nature of a system such as p-cristobalite. RUMS 
are present in planes in k-space (table 1) and a small sample size will sample very few 
wavevectors. Small scale simulations will detect fewer RUMS and, therefore, fewer modes 
of framework distortion. Domains are, therefore, far more likely to be observed in small 
scale simulations as fewer competing symmetries of the RUM fluctuations are sampled. 

The program used for the simulation is based upon one written for the simulation of 
quartz by Tautz et al[28],  and the phases of MgSiO3 pervoskite [29]. The program is based 
upon a classical microcanonical NVE ensemble. The potential used in these simulations was 
that of the two-body Gilbert potential of Tsuneyuki et a1 [30]. Tsuneyuki et a[ deduced 
partial effective charges for qi. of +2.4 for Si and -1.2 for 0. The potential constants 
were developed on a quantum mechanical basis. This potential has been shown to give 
reasonably accurate parameters for the structure and lattice dynamics of a-quartz 125, 311 
and has been applied to an MDs bulk study of the phases of quartz [32]. Its chief limitation 
appears to be a poor reproduction of the behaviour of q u a r t z  under pressure 1251. As this 
study is at ambient pressure, the potential of Tsuneyuki et a1 [30] is well suited to the study 
of disorder in B-cristobalite. 

The time step chosen for the simulation was 2 fs. For the first cycle of the first run each 
of the atoms was given a random displacement. For the next 2000 steps (0.4 ps) the system 
was equilibrated by rescaling the individual velocities to maintain constant temperature in 
the ensemble. After this, the simulation was allowed to find its own unbounded equilibrium. 

The program was set up to simulate a-cristobalite in its standard setting of P41212 
(No 92) of the Znrernational Tablesfor Crystallography [33] with 12 atoms per cell and 
cell parameters a = 4.9694 A and c = 6.9256 A. The initial atomic coordinates were taken 
from the results of the Rietveld refinements of Schmahl et al [l]. The temperature of the 
cy-simulation was 200 "C. The Coulomb sum was evaluated using the Ewald method. The 
real space cut-off was 7 A for both simulations. The reciprocal space cut-offs were 3.77 
and 3.87 A-' for the cy- and B-simulations respectively. 

The p-simulations were performed by mapping the 'ideal' p-cristobalite stlucture onto 
the P41212 structure. To maintain the cubic nature of the phase, the cell parameters were 
chosen so that &a = A b  = c. The relative orientations of the a and 6 lattices in the 
simulations were then the same and both cy and 
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simulations involved 12 atomskell. 

3. Single-phonon density of states 

The phonon density of states, g(o), represents the total number of phonon modes (or states) 
of a given frequency, o, per unit volume and may be expressed as 

where s is the label of a phonon dispersion branch propagating along the wavevector k. The 
calculation of the density of states in MDS may be achieved by calculating the singleparticle 
velocity self-correlation function, C(t),  over a period of several ps. This is expressed as 
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where the brackets () indicate an ensemble average. 
Four independent correlation functions were calculated in each simulation so that 

they may be averaged to give some idea of the errors involved. The single-phonon 
density of states is the mass-weighted Fourier transform of this correlation function [34]. 
The calculated Fourier transform was weighted with the scattering lengths of Si and 0 
so that the single-phonon density of states is what would be observed in an ideal neutmn 
scattering experiment. The scattering lengths used for Si and 0 were 0.4149 and 0.5309 fm, 
respectively. The calculated densities of states for both phases are shown up to 40 THz 
in figure 3. Both densities of states were normalised to have an area of unity. The 
high frequency modes above 25 THz correspond to symmetric S i 4  stretches, whilst the 
antisymmetric stretches he between ca. 20 THz and 16.5 THz [35]. Si-O-Si intratetrahedral 
bending modes and torsional Si04 modes lie below 16.5 THz. At frequencies below about 
1.5 THz there is a more rapid rise in the ,&phase than the @-phase. This is discussed in 
more detail below. 

0 10 20 30 
v [THZI 

Figure 1. Results of the single-phonon density of states calculations from the 01 (solid lines) 
and @ (dotted lines) simulations. 

3.1. Inelastic neutron spectroscopy 

In order to confirm our predictions of the existence of RUMS in cristobalite, we have 
performed some inelastic neutron scattering experiments on cristobalite. The sample was 
grown synthetically from a 99.999% Si02 glass by heating at 1500 "C for 48 h. The 
experiments were performed on the TFXA spectrometer at the ISIS spallation neutron source. 
The incident neutrons have a wide spread of energies. Two detector banks are present at 43" 
on either side of the specimen, where pyrolitic graphite (002) analyser crystals select only 
monochromatic neutrons which are scattered into the time-of-flight detectors. Higher-order 
neutrons are absorbed with a Be filter. The standard 'time-focusing' TFXA software was 
used to deduce the energy loss. 

TFXA measures SclQl. U) for a parabolic trajectory in (U, lei2), using a fixed analysing 
energy. Although this trajectory does not sample a me  density of states, since the IQ[ 
averaging is not complete, the sampling will be reasonable for modes with frequencies 
only weakly dependent on wavevector. RUMS are very low-energy excitations and are 
therefore virtually independent of wavevector [22]. Therefore, the parabolic trajectory 
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gives a reasonably unbiased spectrum for the RUMS. The samples were packed in an AI 
foil folded into a slab several mm thick, and placed inside a heater containing two side 
heating elements shielded from the beam. The sample chamber was evacuated during the 
measurement. Temperature stability was better than f7 "C. This was not critical to the 
experiment, as the RUM model predicts that the largest change in the inelastic spectrum will 
occur at Tn. Measurements of the inelastic spectrum were performed at temperatures of 
20 "C and 320 "C, well within the stability range of each phase. Each measurement took 
approximately 10 hours. Figure 3.1 shows the results of the experimental measurements 
for energies between G2.5 THz. As no background corrections were performed for this 
measurement, and the IQ1 sampling is not quite complete, it is not possible to determin.: the 
absolute number of states. However, figure 2 shows that there is a strong relative increase 
at low frequencies in S(lQ1, U) (and, therefore, in the number of low-frequency modes) in 
b-cristobalite with respect to a-cristobalite. This is just what would be expected from the 
RUM model of the cristobalite framework the bonding in the framework has not changed 
(the number of raw geometrical constraints is constant), but the symmetry has increased 
so that the number of independent geometrical constraints has been reduced. Consequently 
the number of RUMS is expected to increase. 

I P Swainson and M T Dove 

"0.0 0.5 1.0 1.5 2 0  2.5 

Energy Transfer (THz) 
Figore 2. Top: calculated S(v) from the MO simulation. Boaom: m spectra of S(lQ(. U) of 
cristobalite for ule low-frequency regime. The data from the =-phase are on the lower curve. 

As the averaging of the trajectoy measured by TFXA is not easily calculated in the DAP 
we also display in figure 2 the calculated function S(u) from the MD simulation as a simple 
comparison in the low-frequency region. This is related to g ( v )  simply as S(v) = g(v) /v2 ,  
ignoring such effects as multiphonon and multiple scattering. As the two functions are 
differently weighted only a qualitative comparison is possible. The chief similarity between 
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the measured and calculated function is that in the @-phase there is more of a continuum of 
low-frequency modes than in the a-phase, where a distinct maximum is found. There is a 
systematic difference between the maximum seen in the a-cristobalite in the measured and 
calculated spectra, probably due to the finite sample simulation size and to small e r "  in 
the potential. However, in general the results of the MDS calculations and measured inelastic 
spectra are in agreement about the relative number of modes at low-frequencies. 

Figure 3. Relationship between the S i 4  bond vector b, the crystallographic axes (111). (li0) 
and (11z). The ideal S i 4  orienhtion is along the (111)  axis. .9 is the torsional angle between 
(1 11) and b. + is the azimuthal angle arbitrarily defined with respect to fhe (llz) axis. 

4. Orientation of the Si-0 bonds in @-cristobalite 

4.1. Characteristics of the ensemble 

The bond orientation is described with the use of the spherical polar coordinates B and 4. 
Figure 3 displays the relationship between the S i 4  bond vector b, the crystallographic axes 
and the angles B and 4. B (the torsional angle) is defined as the deviation away from the 
'ideal' (1 11) Si-0 bond vector. The angle 4 (the azimuthal angle of rotation) is defined as 
the projection of this vector down into the orthogonal (Il~)-(liO) plane; i.e. at a fixed 0, 
4 defines the position around the annulus. This examination of the orientational distribution 
of &e S i 4  bonds was performed to search for signatures .of RUMS in the local motions, 
and to assess whether or not domains were formed by their action. 

The possibility exists that the Si-0 bond vectors precess by making discrete jumps of 
fractions of 360" about the 'annulus'. We therefore examined the correlations of the motions 
of the Si43 vectors around the 'annulus' with an orientational correlation function (OCF), 
C(@(t ) ) ,  defined as 

The corresponding OcFs C(Z@(t)) ,  C(34(t))  and C ( @ ( t ) )  were also.calculated in order to. 
examine the dynamics of rotation, and to see whether there were any tendencies to rotate in 



1780 

jumps of 360°, 180". 120" or 60". respectively. These are shown in figure 4. The results are 
the average of four timeseries calculations. It is obvious that the higher order oms rapidIy 
decay to zero, indicating that there is little correlation in time between angles 180", 120" 
or 60" apart. The higher order correlation functions decay progressively more rapidly. 
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1.0 
0.9 
0.8 
0.7 
0.6 2 0.5 - 0.4 
0.3 
0.2 
0.1 
0.0 

-0.1 
0 200 400 600 

fs 
Figure 4. Orientational correlation functions of the p simulation. In order of increasing decay 
rate they m C(4(r)). C(W(r)), C(W(r)) md C(W(r)). The results are rbe average of  four 
independent time-series. 

The calculated 0 angle distribution, p(B), together with the function p(B)/sin(@), is shown 
in figure 5. The function p(6')/sin(8) shows a broad peak extending quite some distance 
from the central 6 = 0" peak, clearly showing that bond angle disorder is present in the 
system. The calculation was performed by averaging the instantaneous orientation of one 
S i 4  vector from each of the 4096 PES at four different time steps, each 100 time steps apart. 
p ( 0 )  is broad and slightly asymmetric with its maximum at ca. 16", corresponding to an 
average value of the Si-OSi  angle (180" - 28) of ca. 148". p ( 0 )  is interesting in the tight 
of comparison to the experimentally determined function V ( a )  of silica glass in the classic 
paper of Mozzi and Warren [36]. This experimentally measured distribution is also very 
broad, although it is likely in the case of a glass that the orientations of any one S i 4  bond 
have much grater constraints placed upon them than in the crystal, so that the distribution 
is more static in character. The comment of Mozzi and Warren [36] that the measured 
broad angular distribution of glass is a characteristic distinguishing between amorphous and 
crystalline silica would appear to have been made with regard to the or-phases, where the 
relatively static nature gives a well defined bond angle. 

We also define a cumulative bond angle distribution, P(8) .  which is related to p(6') by 
0 

p(e) = p(e')de' (5) 

and is shown in figure 6. This reveals that one quarter of the bonds lie below 12", a half 
below 16" and three quarters below 21.5". 
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.-.. 
m .  

~.~ 0 ,  I 
0 io 20 30 '40 50 

e 
Figure 5. B band angle distributions, p(8) and p(8)l sin(@, defining the deviation away from 
the 'ideal' orientation. p(e)lsin(8) shows the presence of awry broad peak at 0 # 0'. indicative 
of band angle disorder. p(8) shows a dislribution with great similarity to that derived by Mozi  
and Wa" p61. The distribution is an average of one Si-0 veaoi from eich of 4096 PES, and 
averaged from 4 time steps, each 100 time steps apart. 

Si-0-Si = 180" - 28 
180 170 180 150 140 130 120 110 100 

1.2 , 8 L I 1 I I I 
1.0 

0.8 

0.4 

0.2 

0.0 
0 5 10 15 20 25 30 35 40 

o/o 
Figure 6. Cumulative disuibution function (P(f3)) OF the 8 angle. 

Figure 7 shows a map of 6'4 of the same S i 4  bond vector shown in figures 5 and 
6. The broad distribution of S i 4  bond vectors in 8 is obvious, as is the fact that the 
distribution in $ is nearly isotropic. Any $-dependence is extremely weak and there are no 
positions about the 'annulus' that are well-defined with respect to the crystal axes. This is 
incompatible with any domain models of the p-phase, all of which are based on clusters of 
Si-0 bond orientations forming at special equivalent points within the space group FdTm. 
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+ O  

Figurc 7. 0 4  m p  of bond vector distributions in the ensemble. The contours were arbitxarily 
scaled from m to ten (maximum occupation). The distribution is an average of one S i 4  
vector from each of 4096 PES. and averaged from 4 time steps. each 100 time steps apan. There 
is at best. m extremely weak @-dependence which M just be discerned. and no evidence of 
domains. 

4.2. Characteristics of single Si-0 vectors 

Figure 8 shows the motion of a single bond vector from one PE of the simulation. This 
shows that the bond vectors display a large degree of dynamic disorder. It must be stressed 
that these rotations are not uncommon in the simulation; this particular bond vector has 
been chosen out of many we have examined to illustrate the case. Over an equivalent 
time scale many bonds will not flip even once about the 'annulus', but all show some 
dynamic fluctuation. The sudden drop in the lower diagram, at ca. 1.9 ps, is due to the 
atom moving right around the 'annulus' and leaving the upper bound of the precession 
angle, at + = 180", and reentering at the lower bound at + = -180": the apparently 
extreme discontinuity in the graph actually corresponds to a fairly continuous rotation. The 
complete rotation about the 'annulus' occurs in under 0.4 ps. The bond is not continuously 
spinning about the 'annulus', but spends the majority of its time making rather smaller 
fluctuations in orientation. The inclination angle, 8, is also disordered. In fact, although the 
angular range is smaller in magnitude, the 8 fluctuations are even more impressive, as the 
range 0-28" corresponds to fluctuations in Si-Osi bond angle (180" - 20) of 180-124". 
There appears to be some correlation between the two angles, for instance where + makes 
fairly rapid changes (e.g. ca. 0.5 ps, ca. 1 ps. ca. 1.4 ps and ca. 2.05 ps) there appear to 
be corresponding changes in 8. However, at least for the last three examples, this may be 
exacerbated as 8 falls to very small angles, making the definition of $ rather difficult. The 
spread of 6' in the p(B) of figure 5 is, therefore, not due to varying static inclinations of 
individual bonds. Instead both orientational variables are fluctuating quantities. 
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Figure 8. An example of a Single bond undergoing dynamic reorientation in fl-cdstobdite. 

5. Pair distribution functions 

The pair distribution function, g ( r )  is a common measure of order in a structure. It is 
often employed in the description of amorphous materials. In the case of cristobalite, we 
are interested in the pair distribution functions as a measure of the existence of disorder 
induced in the lattice by low-frequency modes. It is possible to calculate g ( r )  directly 
in a simulation. g ( r )  tends to show quite sharp peaks at low r where local chemical 
considerations give rise to short-range order, such as rigid Si04 tetrahedra. As r + CO, 

g(r )  + 1 as inter-particle effects vanish in this Iimit and the number of pairs tends to the 
average number expected from the mean density if there were no interparticle influence 
present. 

In addition it is possible to extract the partial pair distribution function, by counting 
distances between certain pairs of atoms only. g s s i ( r ) .  gsi-o(r) and g w ( r )  are shown 
displayed in figures 9, 10 and 11 respectively. Even in a perfectly ordered, ideal crystal 
g(r)  --f 1 as r + 00, so comparison of degrees of order becomes more difficult at very high 
r .  However, these figures demonstrate that the a phase is more ordered on nearly all length 
scales beyond the level of the tehahedron, reflecting a more constricted 0 distribution, as 
there are fewer RUMS present in the a-form. In both phases g s j s ( r )  has much greater 
correlations at higher r than either g w ( r )  or gs ia ( r ) .  These latter functions decay much 
more quickly. This reveals that the Si sites (the centres of gravity of the tetrahedra) are less 
affected than the tetrahedral orientation (defined by the 0 positions). However, comparing 
gsisi(r)  between the two phases reveals that the higher RUM amplitude does cause a greater 
smearing of the centres of gravity in the p phase. Both rotational and torsional RUM motion 
will tend to average g w ( r )  and gsia(r), whereas only torsional motion will affect gsia(r). 



1784 I P Swainson a d  M T Dove 

6 

5 

4 - 
G 3  

2 

1 

n 

7 

z 4  

3 :i 2 

v 
M 

0 't - 
0 2 4 E 8 10 12-14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24 

,/A 

6 

5 

4 

5 
2 

1 

6 -  

5 -  

z 4  
- 

v 
M 

3 -  

2 -  

1 -  

0 
0 2 4 6 8 10 12 14 16 18 20 22 24 0 

r/h 
4 6 8 10 12 14 16 18 20 22 24 

,/A 
F i y r e  9. 
g s s j ( r )  for U (top) and +4 (bottom) simulations. 

The partial pair distribution function of Figure 10. The partial pair distribution function of 
gsi-o(r) for U (top) and +4 (bottom) simulations. 

6. Structure factors of b-cristobalite 

The structure factor S(Q) represents what would ideally be measured in a neutron diffraction 
experiment. A previous neutron powder diffraction measurement has been made of 
cristobalite using the instrument HRPD at ISIS [l]. A large undulating background was 
seen in the spectrum of the ,&phase which was not present in the spectrum of the a- 
phase. To check the possibility that the RUM-induced disorder was the origin of this effect 
we calculated S(Q) for 0-cristobalite. For comparison we calculated the partial structure 
factors from each of the partial pair distribution functions in order to see which of these 
gave the largest contribution. The partial smcture factor, S,,(Q), is related to the (partial) 
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pair distribution function g,,(r) by the Fourier transform 
m 

&(Q) = 1 +PL (gp(r) - I)expi(Q .r)dp 

where p is the mean number density of particles in the lattice. This can be simplified to a 
function oftheform ~ . 

if the assumption is made that the distribution is isotropic [37]. 
The structure factors from each of the partial pair distribution functions of f7-cristobalite, 

gsisi(r), gsia(r), gm(r),  were calculated using equation (7). These are .displayed in 
figure 12, along with the full structure factors of B-cristobalite, in the region of 4-32 A-'. 
In these calculations, the Fourier transform was weighted by the neutron scattering lengths 
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Figure 12. Calculated s ~ c t ~  faclors of cristobalite (solid line), formed f” the partial 
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given in section 3. The total structure factor was then calculated by weighting each of the 
component structure factors by both the neutron scattering lengths and the proportion they 
conhibute to the total. As Si is one third, and 0 two thirds of the total number of atoms 
per unit cell, the proportions (f) are 1/9,4/9 and 419, respectively. The total S(Q)  is then 
defined as 

The small weighting of 119 on S(Q)si~i means that its contribution to the total S ( Q )  is 
so small that it barely affects the end result (see figure 12). This weighting infers that the 
humps are chiefly generated by the dynamic 0 disorder in the lattice. This fits well with the 
fact that dl RUMs produce 0 motion, whereas only torsional RUMs move the centre-of-mass 
of the Si04 tetrahedra. The weighting reduces the significance of such motion still further. 

Schmahl et al [ 11 measured the neutron powder diffraction spectra of ,!kristobalite. No 
background corrections were made for these measurements and the measured spectra contain 
scattering from both the can and the furnace. It is, therefore, not an absolute measurement. 
However, three broad maxima are seen in the background as diffuse scattering at 58 000, 
36 000 and 25 000 ps. These were not present in the a-phase and are, therefore, related to 
the dynamic disorder. The conversion factor for time-of-flight to d-spacing for HRPD is 
2.07 x ps 

In the middle range, the total structure factor shows a series of peaks. The positions of 
the centres of the first four of these peaks were measured, and were found to be at 5.20,7.60 
and 9.83 and 12.16 A-’. In general, the features in the measured spectrum are broader than 
those in the calculated structure factor. The broad hump observed centered at ca. 36 000 ps 

In Q, these maxima are at 5.23, 8.43 and 12.14 A-’. 



Molecular dynamics simulation of 01- and p-cristobalite 1787 

appears to correspond to two maxima in the structure factor calculations, but otherwise the 
agreement between experiment and calculation is good. 

We have demonstrated that the S(Q) calculated from the simulation of the @-phase 
correlates well to that seen in the neutron powder diffraction study. This implies that the 
nature of the disorder in the p simulation is characteristic of that in the real system, i.e. 
that the disorder is dynamic, RUM-induced, and that domains are not required to explain the 
structured diffuse scattering; 

7. Previous simulations 

The only previous large scale simulation of cristobalite concentrating on the nature of the p- 
phase is the MC study by Welbemy er al [24]. The MC simulation was based upon interactions 
between the atoms using a force constant model. The values ofthis force constant model 
had been calculated from fitting to the Raman spectrum of or-cristobalite as measured by 
Bates [19]. They found that this model produced a deviation from the 'ideal' 0 position 
an order of magnitude less than that required for the static occupation of the 96(h) sites of 
the Wright and Leadbetter model [18]. Unlike this simulation, their subsequent simulations 
were placed under a number of strong constraints on the structure and force constant values. 

One model removed all direct S i S i  interactions and added an S i -OSi  bond bending 
term to the force constant model of the form 

2 Esj-o-si = K(B - 147) 
with K chosen to force the Si-Osi to take up values of 147", within a standard deviation of 
0.5". This model produced an essentially uniform distribution of 0 atoms around an annulus, 
defined about the 'ideal' position. Their most sophisticated model involved, amongst other 
constraints, the addition of a second nearest neighbour 0-0 interaction and a term dependent 
on the O s i 4 S i  dihedral angle. Their reason behind this was to try to induce ordering, 
but they could find no potential which could do so to any significant degree. 

To calculate how the scattering from a system with partial  ordering would appear, they 
placed a different constraint on their system. Two of their models took the 0 positions of 
this first model and moved them 20% and 40%. respectively, towards their nearest 96(h) 
position. The purpose behind this forcing of the simulation was to calculate the diffuse 
scattering from such geometries. Their conclusions, based upon the calculated diffraction 
patterns, was that increased ordering towards the 96(h) sites was a worse description of the 
p phase than the 'ideal' structure! Their best description came from the model constrained to 
the 147" tilt from the 'ideal' orientation-the mean value of the broad distribution obtained 
from our unconstrained simulation. 

8. Conclusions 

The conclusions from the previous MC and this MD simulation regarding the nature of the 
@-phase are very similar. There is no evidence of any preference for crystallographically 
distinct domains. Because of the lack of any significant #-preference in both studies, both 
the model of Hatch and Ghose [9] and a dynamic interpretation of the model of Wright and 
Leadbetter [18] would appear to be ruled out. 

The results of this MD simulation paint a very clear picture of @-cristobalite as a 
dynamically disordered system, in which the FdTm symmetry is preserved. It is a summation 
of RUMS of many different symmetries that generates the dynamic disorder, and for this 
reason domain models appear to be a poor description of p-cristobalite. The dynamic 
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disorder observed in the simulations has been shown to be consistent with the modulations 
in the background of the neutron powder diffraction spectra of Schmahl et al [I]. The 
original disordered annulus model of Nieuwenkamp [17] is closest to the simulation results, 
although it is obvious that if the term 'annulus' is to be used, it should not be thought of as 
a fixed radius annulus, but rather as a very broad probability distribution, as is shown by 
figure 5. The dynamic disorder has been shown to mainly affect the 0 atoms (see section 5) 
and to be present to a much larger extent in the B phase than the (Y phase, which is consistent 
with predictions made from the RUM description of the system. 
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